129 research outputs found

    Surface Coal Mining Methods in China

    Get PDF

    Generalized Grey Target Decision Method for Mixed Attributes Based on Connection Number

    Get PDF
    Grey target decision model for mixed attributes including real numbers, interval numbers, triangular fuzzy numbers, and trapezoidal fuzzy numbers is complex for its data processing in different ways and information distortion in handling fuzzy numbers. To solve these problems, the binary connection number proposed in set pair analysis is applied to unify different types of index values with their parameters’ average values and standard deviations as determinacy-uncertainty vectors. Then the target center index vectors are determined by the modules of index vectors of all alternatives under different attributes. So the similarity of each index vector and its target center index vector called nearness degree can be calculated. Following, all the nearness degrees are normalized in linear method in order to be compared with each other. Finally, the optimal alternative can be determined by the minimum of all integrated nearness degrees. Case study demonstrated that this approach can not only unify different types of numbers, and simplify the calculation but also reduce the information distortion in operating fuzzy numbers

    Initial spread of 137Cs from the Fukushima Dai-ichi Nuclear Power Plant over the Japan continental shelf : a study using a high-resolution, global-coastal nested ocean model

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 5439-5449, doi:10.5194/bg-10-5439-2013.The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tōhoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide 137Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of 137Cs over the eastern shelf of Japan. The 137Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March–31 August 2011. The results clearly show that for the same 137Cs discharge, the model-predicted spreading of 137Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∼2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of 137Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∼5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the 137Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of 137Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of 137Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of 137Cs in the ocean.This project was supported by the US National Science Foundation RAPID grants No. 1141697 and No. 1141785 and the Japan Science and Technology Agency J-RAPID program. The development of Global-FVCOM was supported by NSF grants ARC0712903, ARC0732084, and ARC0804029. Z. Lai’s contribution was supported by the Natural Science Foundation of China project 41206005, China MOST project 2012CB956004, and Sun Yat-Sen University 985 grant 42000-3281301. C. Chen serves as chief scientist for the International Center for Marine Studies, Shanghai Ocean University, and his contribution was supported by the Program of Science and Technology Commission of Shanghai Municipality (09320503700)

    Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zang, Z., Ji, R., Liu, Y., Chen, C., Li, Y., Li, S., & Davis, C. S. Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine. Limnology and Oceanography Letters, 7, (2022): 277-285, https://doi.org/10.1002/lol2.10245.Spring phytoplankton blooms in the Gulf of Maine (GoM) are sensitive to climate-related local and remote forcing. Nutrient supply through the slope water intrusion has been viewed as critical in regulating the GoM spring blooms, with an assumption that nitrogen is the primary limiting nutrient. In recent years, this paradigm has been challenged, with silicate being recognized as another potential limiting nutrient, but the source of silicate and its associated water mass remain difficult to be determined. In this study, a time series of spring bloom magnitude was constructed using a self-organizing map algorithm, and then correlated with the fluctuation of water composition in the deep Northeast Channel. The results reveal the importance of silicate supply from previously less-recognized deep Scotian Shelf Water inflow. This study offers a new hypothesis for spring bloom regulation, providing a better understanding of mechanisms controlling the spring bloom magnitude in the GoM.This study was supported by NOAA Coastal and Ocean Climate Application (COCA) Program (NA17OAR4310273) and NSF Northeast US Shelf-Long-Term Ecological Research (NES-LTER) Program (OCE-1655686)

    Influence of ocean freshening on shelf phytoplankton dynamics

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L24607, doi:10.1029/2007GL032010.Climate change-induced freshening of the ocean can enhance vertical stratification and alter circulation patterns in ways that influence phytoplankton dynamics. We examined the timing of spring phytoplankton blooms and the magnitude of net primary productivity in the Nova Scotian Shelf (NSS) - Gulf of Maine (GoM) region with respect to seasonal and interannual changes in surface water freshening from 1998 to 2006. The general pattern of temporal westward progression of the phytoplankton bloom corresponds with the gradient of increasing sea surface salinity from the NSS in the east to the western GoM. Increased freshening enhances the spatial gradients in bloom timing by stimulating earlier blooms upstream (NSS), but it has less impact downstream (the western GoM). Strong spatial gradients (increasing westward) of mean chlorophyll concentration and net primary productivity during post-bloom months (May–June) indicate that lower sea surface salinity upstream can likely impede nutrient fluxes from deep water and therefore affect overall productivity.We thank NSF grant OCE-0727033 and NOAA grant NA17RJ1223 to RJ, CSD and RCB, NSF grants OCE- 0606612 and OCE-0726577 to DWT, and NSF grants OCE-0606928 and OCE-0726851 to CC

    Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 2462–2479, doi:10.1002/2013JC009385.In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.This work was supported by NOAA’s Fisheries and the Environment Program, Grant #12-03 and through NOAA Cooperative Agreement NA09OAR4320129.2014-10-1
    corecore